COMMENTS ON "THE ABSOLUTE ANABELIAN GEOMETRY OF CANONICAL CURVES"

Shinichi Mochizuki

June 2012

(1.) There are a few notational errors in the statement of the condition (\dagger_M) of Lemma 3.4, which, however, do not affect the proof of Lemma 3.4 in any substantive way. The subquotient " $\mathbb{G}^2(M)$ " (respectively, " \mathbb{G}^{-1} ") should have been denoted " $\mathbb{G}^{-2}(M)$ " (respectively, " \mathbb{G}^{1} "). The subquotient $\mathbb{G}^{-2}(M)$ (respectively, \mathbb{G}^1) is isomorphic to the tensor product of an unramified module with a Tate twist $\mathbb{F}_p(-2)$ (respectively, $\mathbb{F}_p(1)$). That is to say, there is a sign error in the Tate twists stated in (\dagger_M). Finally, in order to obtain the desired dimensions over \mathbb{F}_p , one must replace the cohomology module

" $M \stackrel{\text{def}}{=} H^1(\Delta_{X^{\log}}, \operatorname{Ad}(V_{\mathbb{F}_p}))$ "

by the submodule of this module consisting of elements whose restriction to each of the cuspidal inertia groups of $\Delta_{X^{\log}}$ is upper triangular with respect to the filtration determined by the *nilpotent monodromy* action on $V_{\mathbb{F}_p}$ [i.e., by the cuspidal inertia group in question]. That is to say, an elementary computation shows that the operation of restriction to this submodule has the effect of *lowering* the dimension of $\mathbb{G}^{-2}(M)$ from 3g - 3 + 2r to 3g - 3 + r, as desired.